The International Hunt for Dark Energy Is On, Here’s What’s Coming

We’re living in this time where most of the
matter is dark. We’re not actually seeing it. And most of what we call the energy density
of the universe appears to be dark as well. So, we’re in what I like to call this period
of maximum ignorance right now, where we’ve learned a ton about all of the normal matter
of the universe everything that makes you and the Earth and the Sun. But, what we know
today is that’s only less than 5% of the universe. And then, the other 95%, we don’t know. The
majority of that 95% is dark energy, a mysterious force that’s expanding the universe faster
and faster. Cosmologists from around the world are unsure why this acceleration is
happening. That’s why in the absence of data, an international team of scientists
and engineers are building a dark energy hunting machine to probe the far reaches of the universe
to a point in spacetime few have ever seen. So we call it dark energy because we don’t know
what it is. We can detect it through other measurements, but we can’t observe it directly.
Scientists first became aware of dark energy in the late 1990’s after two independent
teams of astrophysicists were racing to determine the rate at which the universe was expanding. Both
teams expected to see the expansion slowing down, due to the long established theory that
the attractive force of gravity was pulling the universe together. However, they observed
something completely unexpected. The expansion of the cosmos was speeding up, not slowing
down, meaning that there must be something like the appearance of an anti-gravitational
force at play. We looked at that as like, Oh, yeah. That’s weird. That can’t possibly
be right. They must have done something wrong. So, it seemed pretty easy to dismiss it at
the time. But with further experiments and observations, the initial findings continued
to hold up. In fact, those original papers from 1998 and 1999, they knew what they were
doing. They got it exactly right. This repulsive force which we now call ‘dark energy’,
is something that still perplexes us. It’s easier to say what we do know about dark energy
than what we don’t know. So, what we do know is that in the early universe, it was not
very important. But, at some point between six or seven and eight billion years after
the Big Bang until today dark energy became the dominant force affecting what’s happening
to the universe as a whole. We know it’s not a particle because if it were caused by some
particle, there would be other manifestations of it. So, it appears to be something like
a force. And at the moment, it’s a very data-starved discussion. Every week it seems, there are
new theories coming out. Some of them having to do with this modification of our laws of
gravity. Some having to do with introducing new forces in the universe that would be a
dark energy force or forces. And then, there are other even grander ideas about additional
dimensions in the universe effectively leaking in on the four dimensional space that we see
and exerting this force on our space. One of the first next big experiments to really
measure this at this precision level is the DESI experiment. DESI is a fiber optic spectrograph
that will construct a 3D map of the universe, tracing close to 12 billion years of cosmic
history. This engineering marvel is being mounted onto a telescope in Arizona where
it will measure the spectra of more than 35 million galaxies to observe dark energy’s
effect on a much grander scale. We’re using new classes of optical designs to get
these large fields of view. A big part of the DESI project was making this beast that
we call the optical corrector that’s really glasses on the top of the telescope. It’s
a set of six lenses where the largest lens is 1.1 meters in diameter. And all of these
lenses are polished to a precision. Okay so check, we’ve done that, big field of view. The
next challenge was figuring out how to catch the light of multiple galaxies at the same
time. We have a lot more fibers. We have 5,000 fibers and we also have a really quickly
reconfigurable focal plane. Each robot can move individually, so we can reposition every
single fiber at the same time. So we cut down the time between observations from a
few hours down to three minutes. Which means with each fiber aimed at the sky. We can map
5,000 galaxies every 15 minutes. The main goal of the fiber system is to preserve the
quality of light that the telescope delivers. You know, these photons have spent billions
of years reaching us. We do everything possible within that fiber system
to deliver the light to the spectrograph without degrading it. The spectrograph is 10 identical
units that fill an entire room. DESI is nearing completion of its installation phase and gearing up to scan the skies. We have the focal plane installed, and then after the focal plane
is safe to operate, then we install the fiber cables to the slits. We’ll make a precision
map of the geometry of the universe from the distance of about seven billion light years
to about 10 or 11 billion light years. And so this is the phase of history of the universe
where dark energy turned on. Where it became the dominant force in the universe. So, to
construct a 3D map and understand dark energy’s role, DESI will first need to look at a unique
cosmological effect. The universe did deliver a specific feature that we can latch onto
and that’s this baryon acoustic oscillation feature. When the universe went through this
specific transition where it was a plasma of very hot ions and then cooled off it was
383,000 years after the big bang, right at that time there were sound waves propagating
in the universe that got frozen in. Mapping those soundwaves with DESI will give scientists a sense of the distribution of the galaxies and scale of the universe. But BAO’s don’t
give us the whole picture. In this age of accelerated expansion, galaxies are moving
away from us, so scientists need to measure how fast they’re traveling. Fortunately,
galaxies leave a clue behind: their light waves. These waves are stretched to redder
and redder wavelengths, which is called their redshift. By knowing a galaxy’s redshift,
scientists can tell how far away it is and turn our view of the sky into a 3D map. In
the first year of operations starting in 2020 we’ll actually have a larger map of the
universe than all of humanity before us. So we’ll be able to verify what our understanding
of dark energy is today, geometry at a few different epochs, how dark matter is pushing
around these galaxies. That’s what we’ll see after the first year. Then it’ll be the subsequent
years where we’ll have a large enough map that it’ll really be the new discovery potential for dark energy. These cosmic map makers are charting the open sky, uncertain of what they’ll eventually find. But diving into the unknown is just part of the job. What
they learn in the end will only expand our knowledge of the universe, and our small place
in it. The better we understand dark energy, the better we understand how the universe
is going to evolve and we learn what’s going to happen to the universe in the end. What
I can tell you is that these will be the best data that we have once we complete this map,
and it will certainly rule out many, many potential models for dark energy. It’ll be very interesting to see what’s left on the table after that.